Ab initio molecular dynamics simulation of the effects of stacking faults on the radiation response of 3C-SiC
نویسندگان
چکیده
In this study, an ab initio molecular dynamics method is employed to investigate how the existence of stacking faults (SFs) influences the response of SiC to low energy irradiation. It reveals that the C and Si atoms around the SFs are generally more difficult to be displaced than those in unfaulted SiC, and the corresponding threshold displacement energies for them are generally larger, indicative of enhanced radiation tolerance caused by the introduction of SFs, which agrees well with the recent experiment. As compared with the unfaulted state, more localized point defects are generated in faulted SiC. Also, the efficiency of damage production for Si recoils is generally higher than that of C recoils. The calculated potential energy increases for defect generation in SiC with intrinsic and extrinsic SFs are found to be higher than those in unfaulted SiC, due to the stronger screen-Coulomb interaction between the PKA and its neighbors. The presented results provide a fundamental insight into the underlying mechanism of displacement events in faulted SiC and will help to advance the understanding of the radiation response of SiC with and without SFs.
منابع مشابه
Ab initio study on the variation of stacking interactions of aniline and hydrated aniline systems
The use of appropriate level of theories for studying weak interactions such as 8-8 stackinginteractions of aromatic molecules has been an important aspect, since the high level methods havelimitations for application to large molecules. The differences in the stacking energies of variousaromatic molecular structures are found significant. It is also very important for identifying the mostfavor...
متن کاملResponse of semi-empirical and AB initio methods to angle strain and conjugation effects in (Z,Z,Z)-Cycloocta-1,3,5-triene
The results of MNDO, AM1 and PM3 semi-empirical calculations and HF/6-31G*, MP/6-31G*, MP2/6-311+G**, and B3LYP/6-311G** and QCISD/6-31G* ab initio methods for angle strain and conjugation effects in twist-boat, boat, and half-chair geometries of (Z,Z,Z)-cycloocta-1,3,5-triene indicate that all methods, except PM3, predict wrong ordering of the conformations.
متن کاملA new type of quantum wells: stacking faults in silicon carbide
We report on a new type of quantum wells with the width as thin as 10 Å, which are composed of SiC only, and consequently have ideal interfaces. These quantum wells are actually stacking faults in SiC. Certain types of stacking faults in SiC polytypes create small 3C-like regions, where the stacking sequences along the c-axis become locally cubic in the hexagonal host crystals. Since the conduc...
متن کاملA molecular dynamics simulation of water transport through C and SiC nanotubes: Application for desalination
In this work the conduction of ion-water solution through two discrete bundles of armchair carbon and silicon carbide nanotubes, as useful membranes for water desalination, is studied. In order that studies on different types of nanotubes be comparable, the chiral vectors of C and Si-C nanotubes are selected as (7,7) and (5,5), respectively, so that a similar volume of fluid is investigated ...
متن کاملA molecular dynamics simulation of water transport through C and SiC nanotubes: Application for desalination
In this work the conduction of ion-water solution through two discrete bundles of armchair carbon and silicon carbide nanotubes, as useful membranes for water desalination, is studied. In order that studies on different types of nanotubes be comparable, the chiral vectors of C and Si-C nanotubes are selected as (7,7) and (5,5), respectively, so that a similar volume of fluid is investigated ...
متن کامل